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Abstract. Large de bruijn graph based algorithm is widely used in genome as-
sembly and metagenetic assembly. The scale of this kind of graphs - in some
cases billions of vertices and edges - poses challenges to genome assembly prob-
lem. In this paper, a one-step bi-directed graph is used to abstract the problem of
genome assembly. After that small world asynchronous parallel model (SWAP)
is proposed to handle the edge merging operation predefined in the graph. SWAP
aims at making use of the locality of computing and communication to explore
parallelism for graph algorithm. Based on the above graph abstraction and SWAP
model, An assembler is developed, and experiment results shows that a factor of
20 times speedup is achieved when the number of processors scales from 10 to
640 when testing on processing C.elegans data.
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1 Introduction

Current sequencing technology (Illumina Solexa [1], Applied Biosystems SoLiD[2],
and Helicos Biosciences Heliscope[3]) allows one to read millions of 35 to 100 nu-
cleotide sequences per hour. Due to experimental errors, gaps, and genomic repeats, a
much higher coverage depth of 50-fold to 300-fold is needed for accurate assembly.
These factors contribute to a 300-fold to 1000-fold increase in the number of reads, re-
sulting in billions of reads need to be processed, and this significantly complicates the
genome assembly problem.

De Bruijn Assembler based on de-bruijn graph strategy [4][5] is well suitable for the
current generation high throughput short reads assembly. In De Bruijn graph each vertex
represents a length-k substring (k-mer) in a length-L read or its reverse complement. A
directed edge connects two vertices u and v, if the k — 1 length suffix of « is the same
as the k — 1 length prefix of v. Each input read is a path in the graph. By connecting
such vertex pairs through edges, this approach generates the longest path without any
branches as contigs.

The first De Bruijn assembler, EULER assembler [5], is proposed by Pevzner, who
has transformed the fragment assembly problem into a variation of the classical Eu-
lerian path problem by dividing reads into k-mers and then constructing k-mers into
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a path graph. This opens new possibilities on repeat resolution and generating error-
free solutions for large-scale fragment assembly problem. Programs such as Velvet[6],
SOAPdenovo[7], and IDBA[8] implicitly use this framework, but they are slightly dif-
ferent in details. Velvet handles these De Bruijn graphs efficiently by eliminating errors
and resolving repeats using error correction algorithm. SOAPdenovo implements pre-
assembler error correction on human genome assembly, after this operation the propor-
tion of error free reads was improved from 64% to 70%, and nearly 60% percent of
k-mers was filtered from the graph. IDBA also adopt pre-assembler error filtering tech-
nique, which can save nearly 40 — 80% of memory compared with velvet. The second
feature of IDBA is that it iterates from small k-mer to large k-mer to get longer contigs.
So the quality of contigs is better than other tools.

The above assemblers can only run on single machine. Human genome assembly
with current sequencing technology needs about 512GB memory and takes weeks or
even months on single server. The performance is worse on plant genome assembly or
meta-genome assembly.

Parallel algorithm for sequencing assembly is an alternative to solve the problem.
Existing parallel assemblers, such as ABySS[9] and YAGA[10-12], are based on De
Bruijn graph strategy. ABySS distributes k-mers to multi-servers to build a distributed
De Bruijn graph, and error removal and vertex merging were implemented over MPI
communication messages. YAGA constructs the distributed bi-directed De Bruijn graph
by maintaining edge tuples in a community of servers. Unanimous chain compaction
problem in YAGA was transformed to undirected list ranking, and then the authors
designed a modified sparse ruling set algorithm for undirected lists. The computational
complexity of YAGA is given by 0(%) compute time, O(%) communication volume, and

O(log?(n)) communication rounds, where 7 is the number of nucleotides in all reads,
and p denotes the number of processors.

Efficient and scalable frameworks or libraries for distributed graphs are essential to
parallel assembly algorithms. Existing works, such as BSPlib [13-15], CGMgraph [16],
PBGL [17,18], Prejel [19], are based on BSP [20] model. BSP model has advantage
on simple computation-communication programming model, whereas barrel principle
exists in the computation-communication phase and synchronous phase over large clus-
ter limits the scalability of this model. The scalability of these implementations under
BSP model has not been evaluated beyond several hundreds of computers [19]. No
genome assembly tools have adapted these BSP library except that YAGA has used
the BSP idea in its design on parallel list ranking algorithm. Another parallel program-
ming model, MapReduce [21], has strength in loosely coupled work such as frequency
statistics, sorting, indexing, and machine learning etc. However graph algorithm is a
tight coupled work, and dividing one graph into several meaningful sub-graphs is still
a challenging problem. Contrail [22] trys to transform the De Bruijn assembly problem
to a list sorting problem, and it is the only parallel assembly tool based on Hadoop
MapReduce platform. However the scalability and the quality of the output contigs are
not further discussed.

This paper first demonstrates a one-step bi-directed graph for the problem of genome
assembly. Genome can be recovered by by merging semi-extended edges to full-extended
edges or contigs. Then small world asynchronous parallel (SWAP) model is proposed
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to realize edge merging over a distributed one-step bi-directed graph. Specially, we im-
plement an assembler using the SWAP model. Given the number of processes p, the
complexity of this problem is reduced to O(%) parallel compute time, O(%) communi-

cation round, and O(%) communication volume, here g is the length of genomes,
and 7 is the number of nucleotide in all input reads. Simulation shows that this assem-
bler over SWAP has a factor of 20 times speedup when the number of processors scales
from 10 to 640.

The rest of the paper is organized as follows: Section 2 abstracts the De Bruijn graph
based genome assembly problem; Section 3 describes the SWAP model for large scale
graphs with small world property, then an assembler, as SWAP’s first application, is
illustrated. Experimental results will be present in section 4. Finally section 5 concludes
this paper.

2 Abstraction of De Bruijn Assembly

DNA sequence is consisted of nucleotides coming from N = {a,,c, g}. Let s € N/ be
a DNA sequence of length /. Any substring derived from s with length k, denoted by
a = s[jIs[j+1]...s[j+k—1],0 < j < [-k+1,is called a k-mer of s. The set of k-mers
of a given string s can be written as Z(s, k), here k must be odd. The reverse complement
of a k-mer «, denoted by o/, is obtained by reversing o and complementing each base
ali] = alk — i + 1] by the following bijection of M, M : {a—t, t—a,c—g, g—c}. Note
that a[i] = a[i]”.

A k-molecule & is a pair of complementary k-mers {@, @’}. Let > be the partial
ordering relation between the string of equal length such that @ > § indicates that the
string « is lexicographically larger than 8. We designate the lexicographically larger of
the two complementary k-mers as the positive k-mer, denoted as o™, and the smaller
one as the negative k-mer, denoted as @, here o™ > a~. We choose the positive k-
mer " as the representative k-mer of k-molecule {«, a’}, denoted as a*. That means
& = a* = {a*,a”} = {a,a’}. The set of all k-molecules of a given string s is called the
k-spectrum of s and is written as S(s, k). Noted that S(s, k) = S(s’, k).

We use the notation suf(a,l)(pre(a,l), respectively) to denote the length / suffix
(prefix, respectively) of string a. Let the symbol o denotes the concatenation operation
between two strings, and the number of edges attached to k-molecule & is denoted as
degree(@).

Definition 1. The vertex set V; is defined as k-spectrum of s,

Vs = S(s, k). 0]
Definition 2. The 1-step bi-directed edge set E! is defined as follows:

s

pre(B,k— 1) A(aoBlk— 1] € (Z(s,k+ 1) VZ(s', k + 1))}

E;} = {e); = (@B, da. dg, Cop)V &, B € S(s, k), suf(a, k1) = o

Equations (2) declares that any two overlapped k-molecules can be connected with
a l-step bi-directed edge, if they are continuous in sequence s or its complementary
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’

sequence. Here d, denotes the direction of k-mer «, if @« = a*, d, =" +/, otherwise

de =" —'. C(lyﬁ is initialized with B[k — 1], and suf(a o C}Iﬁ, k) =B.

Property 1.Given two k-molecules &, B € S(s, k), there will be four possible con-
nections, and for each type of connection exactly two equivalent 1-step bi-directed edge
exist,

Loehg = (@B +,+,Chp) e, =B a7, —~Ch )
2. e}fﬁ, = ("B ,+, -, C}ﬂﬁ,) , elw, =B a,+, -, Cém,)
3. e;_ﬁ =(a,B%, -, +, Cz]t‘ﬁ*') , e'_m =B ,at, -+, C/li-m)
4. e}rﬁ, =(a,B,- -, C;,ﬁ,) s ehw = (B, at, +, +, C;lmr)

TAG— AGT @’ < TCG
CTA —\a0T G+ TSAceA
(a) Connection type 1 (b) Connection type 2
e L /AGTY +T+‘a
AGG cTC - — \CTA /
(c) Connection type 3 (d) Connection type 4

Fig. 1. The illustration of four possible connections.

In each type of connection, the first bi-directed edge and the second one correspond to
the same bi-directed edge, but in different form. Whereas using this scheme, under a
distributed edge representation, the first bi-directed edge in each type will be attached
with k-molecule &, and the second one will be with 3. Figure (1) illustrates four possible
connections and examples of a 1-step bi-directed edge graph.

Definition 3. 1-step bi-directed de bruijn graph of order k for a given string s can
be presented as

Gl(s) = {V,, EL). 3)

Definition 4.Given two 1-step bi-directed edge e}yﬁ = (a,p,dy, dg, C(llﬁ) and eéy =
B.v.ds, dy, Cllfy)’ if e(‘lﬁ.dﬁ = e[l,y.dﬁ and degree(B) = 2, we can get 2-step bi-directed
edge eiy = (@, Y, do, d,, C(ZW) by merging e(‘w and e,,;y, here Ciy = C('lﬁ o C},y. Let the
symbol P denote edge merging operation between two bi-directed edges attached to
one k-molecule, then edge merging operation can be written as,

e('lﬁ @ e/'iy =, )

1 1 2
€y @ gy = €yq- (®)]

or
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According to property 1, equation 4 and equation 5 correspond to one edge merging
operation. Then z-step bi-directed edge can be defined as:

€, = e @ ezy, A,z =x+y,e55ds = e;;y.dﬁ, degree(B) = 2 (6)

Definition 5. Given an n-step bi-directed edge e;"ﬁ = (a, B, dq, dg, Cg“ﬁ) , if k-molecule
a or B has only one another bi-directed edge e’w = (y,a,dy, dqy, C;a) or e’ﬁy = (B,y,dg,d,,C ;iy)
respectively, then e, can be extended by e}, or ez,y , we call this edge a semi-extended
edge, and the corresponding k-molecule « or § semi-extended vertex. If e, can not
be extended by any edge, we call this edge a full-extended edge, k-molecule « and 8

full-extended vertex.

Given a set of string or reads S = {sy, 52, ..., 5y}, a one step bi-directed De Bruijn
graph of S with order of kis G{(S) = {Vs,EL} ={ U Vi, U E,'}. The key prop-
1<i<h 1<i<h

erty of this bi-directed De Bruijn graph G,i(S ) is that each read can be recovered by
traversing the corresponding path in either direction, concatenating (k-1)-molecule pre-
fix of the first node and the edge labels on the path. As all input reads of assembler are
derived from chromosomes, each chromosome can now be seen as a long path in this
graph. However because of read errors, and repeats in the sequence, we can not expect
to see continuity in sampling, and our goal is to recover the genome as a large set of
contigs by merging semi-extended edges to full-extended edges.

3 Assembler over SWAP

Vertices in large scale real world graph (such as social network, web link graph, et)
always have limited number of neighbors, little computing work, and constant number
of edges randomly connected to other vertices, this phenomenon is denoted as small
world property. For a given vertex, we include all its edges, neighbors and itself in its
small world. Then any computing and communication work of a vertex can be done in
its small world. As long as the work of a vertex on a graph does not interrupt others,
we can run computational work of those vertices in parallel. This section will introduce
our work on pursuing parallelism in the computation of bi-directed graph for genome
assembly.

Inspirited from CSMA/CA in wireless networks [23], Small World Asynchronous
Parallel model (SWAP) aims at improving parallelism on processing large scale graph
problem with small world property. After having distributed graph over a network of
processors, the main schedule of SWAP can be defined as a combination of following
three steps:

1. Lock operation is applied to each vertex’s small world, which includes itself and
its neighbors.

2. Computation and modification will be performed in each vertex’s small world.

3. Unlock operation will be triggered after computation step.

The basic schedule of SWAP is Lock-Computation-Unlock. Because of the local-
ity of computing and communication in the small world, SWAP model utilizes local
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synchronization and global asynchronization mechanism to maximize underline paral-
lelism for the graph algorithm.

An assembler over SWAP is the first application using SWAP model. In the fol-
lowing paragraphs we will describe its data structure on distributed de brujin graph,
strategy on error removal, and the edge merging algorithm, respectively.

3.1 Parallel construction of distributed one-step bi-directed De Bruijn graph

For m sequences, S = {si, 52,...,Sn}, sampled from a genome of total length g, we
aim to construct a one-step bidirected De Bruijn graph G,i (§) with O(g) vertexes and
edges distributed among p processors such that each processor stores 0(%) vertices.

Input sequences can be broken into overlapping k-molecules by sliding a window
of length k along the input sequence. Each processor maintains a hash table to store k-
molecules, and each k-molecule is represented as a base-4 number of its positive k-mer.
Numerical values {0, 1,2, 3} are assigned to bases {A, C, G, T'}. The location of a given
k-molecule can be computed by taking mod of a large prime number and then taking
mod of the number of processors. The large prime number is used to evenly distribute
k-molecules to all processors.

A single k-molecule can have up to eight edges, and each of them corresponds to
a possible one-base extension, {A, C, G, T} in either direction. The adjacent k-molecule
can be easily generated by adding the base extension in the edge set to the source k-
molecule.

The construction of one-step bi-directed De Bruijn graph can be achieved in 0(%)
parallel compute time, O(1) round of all-to-all communication, and O(%) parallel com-
munication volume. Here 7 is the total number of nucleotides in the input sequences.

3.2 Error removal

Sequencing errors make the assembly problem more complex. To identify errors, we
assume that the errors are random, and they are unlikely to occur twice in the same
base. As each base in the genome is sampled on average as many times as the coverage
number, the erroneous k-molecule will have lower frequency compared to the correct
ones. According to this principle, we identify all k-molecules with low frequency as
erroneous k-molecules, and delete all of them from our vertex set of the graph. The
complexity of this step is O(f;) parallel compute time.

3.3 [Edge merging

One step bi-directed graph generated in the previous step will likely have many long
chains, and each corresponds to a sequence that can be unambiguously assembled into
a single contig. We will merge these chains into full-extend edges with edge merging
operation defined in section 2.

A subset of k-molecules and their associated edges are stored in processor i, the
set of semi-extended k-molecules stored in this processor is denoted as V;. The edge
merging operation will be applied to all semi-extended edges to form full-extended
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Algorithm 1 Edge Merging Operation Algorithm
Iteration:
1: Element selection operation
For each semi-extended k-molecule & in V;, if &’s two neighbors 3 and % are connected by
) idge;( e, and e;, , then e, and e, can be merged as e" = e, De,. ey =€, b e
: Loc

In order to merging e;,, ;. we need to send Lock messages to lock k-molecules &, and its

v
ay *

neighbours 3, %.
3: Computing
e;;a, e}’w and e;, :
e;;a, e;’y will be deleted, and new edge eg;", esf}}’, between S and ¥ will be added.
4: Unlock
k-molecule & sends unlock messages to unlock k-molecule @ , 3 and 4.
Output:

Return Full-extended edges.

Corgy will be merged into one edge eg;”. That means the original two edges

a’?

edges or contigs. Algorithm of edge merging operation on SWAP implementation is
described in Algorithm 1.

As the bi-directed graph G,'((S) is distributed over p processors, each processor
will store a subset of semi-extended k-molecules V;, and the average number of k-
molecules in V; is 0(%). Then the expected computational complexity of each processor

on edge merging is given by 0(%) parallel compute time, O(%) communication round,

log ..
and O(g‘)%) communication volume.

4 Experimental Results

The assembler is written in C++ and MPI. The hardware and software architecture
supporting this assembler is demonstrated in Fig 2. We use Dawning 5000 as high per-
formance cluster, which has 40 16-core servers with 32GB memory. The distributed file
system is lustre. All the components are interconnected with infiniband 20Gbit Router.

Perl scripts [24] are used to generate the following two theoretical datasets: 50x
coverage of Yeast chromosomes containing 17 million reads, and 50x coverage of
C.elegans chromosomes containing 141 million reads. The error rate is set to be 1%,
and the length of reads ranges from 36bp to 50bp. The primary goal of this experiment
is to demonstrate the scalability of SWAP model on handling large-scale graphs using
parallel system with distributed memory.

We first test the performance of this assembler on Yeast dataset. The runtime of
assembler is displayed in figure 3, and the time is divided into three phases, Parallel
File I/O, graph building, and edge merging. The first phase is the time spent on reading
dataset from a distributed file system, the second phase is the time used to construct the
one-step bi-directed graph over the cluster, and the last phase is the time cost on edge
merging operations. The run time is dominated by the third phase, where hundreds of
processors are sending messages to lock their neighbors, merging edges, deleting semi-
extended nodes and edges, and unlocking their neighbors. Figure 3 shows that this phase
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Fig. 2. Hardware and software architecture of the assembler over SWAP.
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has good scalability. The speedup is about 50 when the number of processor scales from
10 to 640 and the overall runtime of assembler on Yeast dataset is reduced by a factor
of 30.

The C.elegans dataset is nearly ten times larger than Yeast, and its corresponding
data on time usage is demonstrated in figure 4. In this figure, the time used in parallel
file I/O is very short compared to the other two phases. The graph construction phase
has a decreasing trend on its running time. This phase have a speedup of 35x. This
speedup is slightly smaller than that of the yeast dataset. The total speedup of all three
phases on C.elegans dataset is about 20.

5 Conclusion

In this paper, we abstracted the problem of genome assembly using De Bruijn strategy.
By constructing the one-step bi-directed graph over k-spectrum of input sequences,
the unanimous path compaction problem in generic genome assembly was transformed
to merge semi-extended edges in our bi-directed graph, and the final contigs are full-
extended edges in our method. The proposed SWAP introduced local synchronization
and global asynchronization mechanism to maximize the parallelism in the graph al-
gorithm. SWAP model applies the Lock-Computation-Unlock scheme to each vertex’s
small world. Based on SWAP model, we developed a De Bruijn assembler over SWAP,
and simulation results confirm that when the number of processors scales from 10 to
640, a factor of 30 and 20 speedup, can be achieved on assembling Yeast and C.elegans
genomes, respectively.

After taking edge merging operations on bi-directed graph, the size of this graph
shrinks dramatically. The latter stage of genome assembly problem involves resolving
branches with pair-end information can be done in a single machine. We will address
this problem in our future work.
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